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On the basis of a second-order correlational model of turbulence and an effective 
numerical algorithm, the problem of the distribution of thermal characteristics in 
a planenonisothermal turbulent gas jet is solved. 

Free turbulent shear flows, such as turbulent jets, represent a sufficiently general form 
of flow with a wide range of applications. The system of accurate equations describing all the 
details of the evolution of the velocity field and the scalar fields cannot be solved using 
current computational means. Therefore, special interest attaches to models that are suitable 
for practical calculations. Sufficient accuracy usually depends on the conditions of the spe- 
cific problem. 

Formulation of the Problem 

A gas jet of velocity Uo and temperature To at the nozzle outlet leaves a nozzle of trans- 
verse dimension d considerably smaller than the longitudinal dimension a into the atmosphere, 
or in the more general case into a cotraveling flow of velocity u . It is required to calcu- 

c 
late the dynamic and thermal characteristics of the jet in the case of large Reynolds numbers 
and a small temperature difference, allowing heat to be regarded as a passive impurity, in the 
range of jet cross sections 20-100 caliber, and to compare the results with experiment. 

For a plane jet in the boundary-layer approximation, the mean velocity is described by 
the continuity equation and an equation following from the law of momentum conservation 

( = + u )  a u  4 _ w  - - -  f~ - - G ~  �9 
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The velocity distribution depends significantly on the law of variation in Reynolds stress 
uiu j , since the low pressure gradient means that it is equilibrium only with inertial forces. 
It hasbeen shown in numerous works that the predominant Reynolds-stress term is u~u2 = R~2. 
Correspondingly, only one equation is used for the Reynolds stress 

(~"~ T "~-w OZ aZ ~~-al --D~- u - ~ z  j-~-a~E. Oz a3--E "-'~12" 

Twice the kinetic energy of turbulence E and its rate of dissipation D u appear in the equa- 
tion as unknowns. The equation for E in the present case is written in the form 

(OC_~_U) OE OE ~0 [ (  E2 I OE ] b R  Ott 
--~- + w - -  Oz ~ + b~ ~ --~-z ] q- 2 12"-~z + bnD.. 

The f o l l o w i n g  d i f f e r e n t i a l  e q u a t i o n  i s  used f o r  the  d i s s i p a t i o n  r a t e  of t he  k i n e t i c  energy  of 
t u r b u l e n c e  

(a + u) OD~ ODu 0 ~ + cl + c2R12 - -  + c3 
+ 0 7 =  o- T } a z ] E a z E ' 

where ai, bi, c i are phenomenological constants. 
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This system of equations is conventional; it has been tested for many problems and gives 
results in agreement with experiment (relative error of the order of 5-15%). 

The mean temperature T is determined by the equation 

(~+u) + w - - = - -  V - - - -  R2r 
ax Oz Oz Oz Ox 

In the general case, its distribution depends significnatly on the components of the heat flux 
uit , since it is in equilibrium with the inertial terms of the equation. In the case consid- 
ered here, the termsu~t = R, T and q'Tt = R2T play an important role. The corresponding equa- 
tionsare sufficiently complex, but it is known from experiments [i] that the behavior of Rx T 
is largely analogous to that of R2 T. Therefore, the heat flux is calculated from the equa- 
tion for R2T, since the components appearing there have been more completely tested experi- 
mentally 

(~'q-U) OR2T " ~ - W - -  - -  V-'~ll l~E q-In R2T. 
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The relation between R, T and R2 T is determined by an analytical expression. For the mean square 
temperature pulsations t 2 = 8, an equation obtained from the accurate equation in the three- 
moment approximation according to [2] is employed 

o--2 = o---2- 0--T-- o ,  

The d i s s i p a t i o n  r a t e  o f  t h e  t e m p e r a t u r e  p u l s a t i o n s  D T i s  s p e c i f i e d  on t h e  b a s i s  o f  t h e  f o l l o w -  
i ng  r e l a t i o n ,  wh ich  a g r e e s  w i t h  e x p e r i m e n t  

Dr = R ~ D~. 
E 

In the given equations , li, mi, and R are phenomenological constants. 

The initial conditions for A T and u are approximated by the experimental dependences 

AT = ATm sech z (0,881 ~t), ATm = AT0 [0,267 (x/h - -  1)] -1/2, 

u ---- um sech2 (0,881 ~u), u,~ = uo[O,174(x/h-- 1)171/2, 

where  [u = z/O, lO9(x/h+ 1,17), ~t---- z/0,141 (x/h +3,5) . For  Rx2, E, R2T, and O, e x p r e s s i o n s  o b t a i n e d  
from the approximation of the experimental data for x/h = 40 are used 

0 ---- ATe .  10 -2 [27,29 exp ( - -  0,853 ~ ) - -  24,44 exp ( - -  1,186 ~)] ,  

R2r = umATm" 10 -2 [3,896 exp ( - -  0,326 ~ )  - -  3,691 exp ( - -  7,136 ~)],  

m -- 2,626~.)], Rx2 = u 2 �9 10 -2 [4,629 exp (--- 0,804~) 3,978 exp ( - -  2 

E =: 2,7u2m �9 10 -2 [9,797 exp ( - -  0,568~ 2) - -  5,923 exp ( - -  1,831~)1. 

The boundary conditions are specified in the form 

Ou OE ODu 
z - - 0 : - -  = 0 ,  R I ~ = 0 ,  - - 0 ,  - - 0 ;  

Oz Oz Oz 

Z=Zm:tt~_ttbd R12=R12bo~ E=Ebo ,  Du=D=bo; 

OT O0 ODT 
z = 0 :  - - 0 ,  R~r = 0, - -0 ,  - -0 ;  

Oz Oz Oz 

z - = z m : T = T i n ,  R2T = R2rbo, 0----%0, Dr = Dr bo. 

The expansion of the jet is determined by the condition 

IOU/OZlZm<~IO--2Um/Zm. 

Analogously, the expansion of the thermal boundary is determined in terms of T m. 
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Numerical Algorithm 

On account of the nonlinearity of the system of equations and the presence of small pa- 
rameters, the accuracy of the calculation depends largely on the numerical algorithm. Its 
basic features are illustrated in the model equation 

A uniform rectangular grid is used 

o__~ o~ o~..._..y_~ (1) 
Ox + ~ (qO ~ = ~ Oz~ 

z~ = ihz, i =  O, 1 . . . . .  Nz; h x =  hz/ao} 

as well asa difference scheme of the form [3] 

^ 
- 

(2) 
^ 

~pi = ep (x~, zi), ~ = q~ (xi+~, z~), k~ = k (q~i), s = sign ki,  

k~- = (k~ - -  s% + lk, - -  SC*ol)/2/> 0, kF  = (k~ - -  SC*o - -  Ik~ - -  s%1)/2 ~ 0. 

Here 0 < o~, oa  < i are weighting functions. 

The first differential approximation of the first-order difference scheme takes the form 

0q~ + k a__?_~ = ( ~ + ~ )  a ~  o 
Ox Oz Oz ~ ' (3)  

w h e r e  ffl = 0, ~ = 0,5hx (k - -  S=o) ((s~ + s) ~ o - -  k); a x =  1, ~ = 0,5h~ (k--S=o) ((Sx-- s) ~0 + k), s~ = s ign(k - -  S=o) . 
Since ~ > O, the solution has a monotonic structure for stable difference schemes [4]. The 
quality of the method is best when the schematic viscosity ~ is a minimum. In practice, ~ is 
minimized by the choice of the parameter ~o. 

When o: = i, the difference scheme in Eq. (2) is nonlinear, and thus an iteration process 
of the following form is necessary 

z+l 
l_l_l+] I~_Z+~ Z+I q~ - -  cp~_~ + k i  q~f~ + i ~ ,~  = bL q)~.z,~, 

h~ 
(4) 

t t z+i z+l 
where k=k(~) - For the error p= ~__~ , where ~ is the accurate solution of Eq. (2), it 

l-I-I t 
is found that 11pll~<ol~]Ipll �9 Convergence occurs if ch x < i, where r when 

Z / 

s l =  1; c = m a x l - - 0 k @ l ) / 0 c p ~ p z ] ,  S l = - - t ;  ~t _ ~ + 0 ( ~ _ ~ ) ,  0 ~ 0 ~ 1 ,  ~ i s  t h e  m e a n  v a l u e ,  

I n  c o n t r a s t  t o  m o d e l  Eq .  ( 1 ) ,  t h e  i n i t i a l  p h y s i c a l  p r o b l e m  i n c l u d e s  a t e r m  o f  t h e  f o r m  

Oz D~ Oz 

w h i c h  i s  a p p r o x i m t e d  a s  f o l l o w s  

Consider the model functionals 

( E~-I +2 t. 1 ' E 2 -I- 2 ( E ~ + E i _ , )  z 
e) a i - - - -  6- ~ D ~ , ~ - I  ( D ~ , ~ + D ~ , z - 1 )  / 

Numerical experiment shows that, with sufficiently large grid steps, the use of functionals of 
the form in (c) allows a more accurate solution to be obtained, and requires less machine time, 
then the use of the expressions in (a) or (b). The model functionals a i are nonlinear func- 
tions of E, D . Therefore, an iterative process based on the following expression is used 

U 
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l l+1 l . l+l  l l + I  

l+1 l 
----- ~ q~, i + (a~+l i+J l+1 l l+, 

The difference scheme is linear relative to i+i 
in Eq. (3), they are reduced to the form 

l+1 l + l  l + l  
Ai ~i-1 - -  Ci r -~- Bi qOi+l = -- Fi, i = 1, 2 . . . . .  M -- 1. 

h 2 l + l  ( ~ i + l  - - -  ~ i )  -- a i  ( ~ i  - - -  ~ i - - 1 ) ) /  Z �9 

�9 To solve the system of difference equations 

(5) 

The systemof algebraic equations in Eq. 
In the present case, it is stable, since 

(5) is solved by the method of difference fitting. 

ICi l />  IAil + IB~I. 

The fitting factors for the functions in Eq. (5) are 

l l l +  
Ai = (~ + rlai) + ah~ (u + O~o) ki , 

hx t l l 
Bi ---- -~ (f~ + raai+l) + ah~ (u -t- 0%) k-i-, 

l 
Ci = A~ + Bi + (u + %) + R~, Fi = R~ + Rj, 

R~ = (q~_, - -  (I + �9 -- al)  h~ (ki_~qo;, i-~ + kF_~%, ~-3) .  

The values of R c and Rf are as follows 
l l 

U:Rc = 0, Rf --  O,5hx/hz(Rl2, i -1 - -R12 ,  ~-t-1), 

l l l l-{-I l-t-1 

R12 : Re --- - -  hxaz (Du,dEi), RI --= 0,Sh~/hza2E~ ( Ui+l - -  ui_,), 
l+1 l+1 I+1 l 

E : R~ -- O, Rj = 0,5hx/hzb~ RI2j  ( ui+l - -  ui-1) -{- h~b3D~, 
l l z+, t+, l+~ l t 

D.  : R~ = --h~cs(DuyEi) ,  R~ = 0,5h~/hzc~ R12.i ( u ~ + , -  m-l)(DuMEi).  

The continuity equation is approximated by a difference equation 

b t + l - - W i  
h~ 

l + l  l + l  
= - -  0 ,5  (( ui - -  u~)/h~ + (u~+l - -  ui+l)/h~). 

The initial condit&ons are specified by analytical expressions. The boundary conditions when 
z = z are specified from physical considerations. The condition of the first kind at the jet 
axis is specified accurately, and the derivatives of the form 3@/3z are specified in difference 
form�9 

The features of the calculation scheme are as follows, i. The initial values for calcu- 
lating the dynamic and thermal characteristics are corrected by additional factors which are 
different for different cross sections of the jet. 2. The mean square temperature pulsations 
and kinetic energy close to the axis are determined by expressions of the form 

{E~, ~ <  0,1, 
E =  E~, ~ 0 , 1 ,  

where 

U 2 E~2,7 m "10 -2 [A  + 1 0 z ( ~ - - A ) [ ~ ] ,  E~ = E~in i, 

q~ = 1 l OZum~ E.,[~=o. 1. 
2,7 
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Fig. i. Mean temperature: i) x/d = 
4O; 2) 60; 3) 80. 
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Fig. 2. Transverse heat flux: i) x/ 
d = 20; 2) 40; 3) 60; 4) I00. 
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Fig. 3 Fig. 4 

Fig. 3. Mean square temperature fluctuations: i) x/d = 20; 2) 40; 
3) 60; 4) I00. 

Fig. 4. Dissipation rate of temperature pulsations: i) x/d = 20; 
2) 60; 3) I00 . ,  

In solving the problem, numerical modeling is undertaken: the dependence of the numeri- 
cal results on the model used to describe the jet is investigated, phenomenological constants 
of the system of equations that are optimal from the viewpoint of agreement with experiment 
are sought, various difference schemes are considered, allowing, above all, the accuracy and 
speed of calculation to be increased, and the dependence of the computational results on the 
choice of initial and boundary conditions is analyzed. 

Results of the Calculation 

I. Analysis of the results of calculation shows that the model used, in combination with 
an effective numerical algorithm, allows computational data in good agreement with experiment 
to be obtained in the range of jet cross section 20-i00 diameters. The relative error in de- 
termining the maximum values of the functions is 3-10% for the dynamic characteristics, while 
the mean temperature and its mean square pulsations are determined with an accuracy of 5-10%; 
the corresponding figures for the thermal characteristics are 5-15% and 5-10%. 

2. The optimal values of the phenomenological constants, ensuring the best agreement be- 
tween calculation and experiment, are 
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al = 0,027, bl = 0 , 0 2 5 ,  C 1 = 0 , 0 2 5 ,  

a 2 = - -  0 , ] 3 ,  b ~ =  - - 2 , 0 ,  c 2 =  - - 2 , 8 5 ,  

a3  = - -  5 , 6 0 ,  b3 = - -  2 , 0 ,  c3 = - -  3 , 8 0 ,  

l l  = O, 11 ,  I~ = - -  0 , 3 3 3 ,  l s  = - -  4 , 5 2 ,  

m l  = O, 1 1 5 ,  m s  = - -  2 , 0 ,  m 3  = - -  2 , 0 .  

3. The time to calculate a single variant is 6-10 min on a BESM-6 computer with grid 
steps h = h = 0.i. 

x y 

4. The calculated and experimental values of the mean-temperature defect (Fig. i) for 
jet cross sections x ffi 40-80 diameters are in agreement within the limits of physical error 
of the measurements (3-8%). The error increases as the cross section approaches the nozzle. 
When x = 20, it is 15%. 

5. The calculational and experimental results of the transverse heat flux (Fig. 2) agree 
within the limits of physical error of the measurements close to the axis, but give a relative 
error of the order of 50% close to the boundary. When ~ < 0.8, the normalized flux is smaller 

E -- 
for smaller cross sections; when ~t ~ 1.0, the opposite is true. 

6. The normalized mean-square temperature pulsations (Fig. 3) agree with experiment 
within the limits of physical error of the measuremens. The maximum value of the normalized 
pulsations increaseswith increase in^distance from the nozzle. The greatest deviation from 
experiment is observed at distances x = 20-30 diameters from the nozzle. 

7. The variation in dissipation rate of the temperature pulsations is shown in Fig. 4. 
The lack of experimental data prevents a comparison. 

lm 
2. 
3. 
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INFLUENCE OF THE VELOCITY PROFILE ON THE HEAT TRANSFER OF 

A CIRCULAR IMPACT JET 

A. I. Abrosimov and A. V. Voronkevich UDC 536.242:532.525.2 

The influence of the mean velocity profile in a round submerged jet on the heat trans- 
fer with a plane obstacle placed along the normal to the flow is investigated. A cri- 
terial relation for the heat transfer in the vicinity of the critical point is ob- 
tained. 

The interaction of an immersed impact jet with a uniform velocity profile at the nozzle 
outlet and a low level of initial turbulence eo with an obstacle is characterized by maximum 
effectiveness ofheat transfer at a distance of h = 7-8 in the vicinity of the critical point 
of the obstacle [i]. This has been noted in many works. In [2], it was suggested that the 
presence of a peak of the heat-transfer coefficient in the vicinity of the critical point is 
a result of the combined influence of increase in intensity of turbulence at the jet axis e m 
and decrease in the axial velocity in the transitional section of the jet. 
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